Classification of Tea Leaf Diseases Based on ResNet-50 and Inception V3

نویسندگان

چکیده

Technological advances have made a major contribution to controlling plant diseases. One method for resolving issues with disease identification is the use of deep learning digital image processing. Tea leaf that requires fast and effective control. So, in this study, we adopted Convolutional Neural Network (CNN) architectures, namely ResNet-50 Inception V3, classify six types diseases attack leaves. The amount data used was 5867, which were divided into classes, healthy leaf, algal spot, brown blight, gray helopeltis, red spot. process distributing involves randomly splitting it three portions, an allocation 80% training, 10% validation, testing. classification carried out by adjusting batch sizes training maximizehyperparameters. are 16, 32, 64. Using different size scenarios each model, shows has better performance on 32 accuracy value 97.44%, while V3 best 64 97.62%..

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning

Very deep convolutional networks have been central to the largest advances in image recognition performance in recent years. One example is the Inception architecture that has been shown to achieve very good performance at relatively low computational cost. Recently, the introduction of residual connections in conjunction with a more traditional architecture has yielded state-of-the-art perform...

متن کامل

Deep Koalarization: Image Colorization using CNNs and Inception-ResNet-v2

We review some of the most recent approaches to colorize gray-scale images using deep learning methods. Inspired by these, we propose a model which combines a deep Convolutional Neural Network trained from scratch with high-level features extracted from the InceptionResNet-v2 pre-trained model. Thanks to its fully convolutional architecture, our encoder-decoder model can process images of any s...

متن کامل

A Deep Learning-based Approach for Banana Leaf Diseases Classification

Plant diseases are important factors as they result in serious reduction in quality and quantity of agriculture products. Therefore, early detection and diagnosis of these diseases are important. To this end, we propose a deep learning-based approach that automates the process of classifying banana leaves diseases. In particular, we make use of the LeNet architecture as a convolutional neural n...

متن کامل

Epidemiology of transport accidents based on international statistical classification of diseases (ICD-10) in Mashhad, Iran

Background: Road accidents are one of the main causes of death worldwide and the second cause of death in Iran. This study aimed to investigate the epidemiology of transport accidents based on the International Statistical Classification of Diseases and Related Health Problems (ICD-10) in patients who referred to trauma department of academic hospitals affiliated with Mashhad University of Medi...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sinkron : jurnal dan penelitian teknik informatika

سال: 2023

ISSN: ['2541-2019', '2541-044X']

DOI: https://doi.org/10.33395/sinkron.v8i3.12604